166 research outputs found

    Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS.</p> <p>Results</p> <p>Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS.</p> <p>Conclusion</p> <p>We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.</p

    Case report: The feasibility of rTMS with intrathecal baclofen pump for the treatment of unresolved neuropathic pain following spinal cord injury

    Get PDF
    The main objective of this study was to assess the efficacy and safety of 10 Hz repetitive transcranial magnetic stimulation (rTMS) for the treatment of unresolved neuropathic pain in an individual with spinal cord injury and an intrathecal baclofen pump. A 62-year-old male presented with drug resistant neuropathic pain as a result of a complete spinal cord lesion at T8 level. Pain was classified into four types: pressure pain in the left foot, burning pain in buttocks, burning pain in sternum, and electrical attacks in the trunk. The treatment period involved 6 weeks of rTMS stimulation performed 5 days per week, a 6-week follow up period with no stimulation, and an 8-week top up session period which began 5-weeks after the end of the follow up period. 2004 pulses were delivered at 10Hz over the right-hand representation of the left primary motor cortex at 80% resting motor threshold during each session. Assessments were based on the numerical rating scale (NRS), neuropathic pain scale (NPS), Hamilton Depression and Anxiety rating scales. Following the treatment period there was a 30, 13, and 29% reduction in sternum, buttocks, and left foot pain respectively, as reported by the NRS. During this time, electrical attacks were abolished following the third week of treatment. These changes corresponded to a 38% decrease in NPS scores and a 65 and 25% reduction in anxiety and depressions scores respectively. The changes in sternum, buttocks, and left foot pain reported on the NRS persisted for 1 week following treatment. Top up sessions delivered 11 weeks after the end of the treatment period were unsuccessful in reducing pain to the level achieved during the treatment period. A 13% reduction in NPS was seen during these 8-weeks. Anxiety and depression scores decreased 78 and 67% respectively. The frequency of electrical attacks was zero during this time. rTMS stimulation delivered throughout this study did not cause any interference with the functioning of the intrathecal baclofen pump. This case study illustrates that rTMS may be effective at reducing drug resistant neuropathic pain with certain pain types exhibiting greater propensity for change

    Non-invasive Brain Stimulation to Characterize and Alter Motor Function after Spinal Cord Injury

    Get PDF
    Advances in transcranial magnetic stimulation (TMS) now permit the precise assessment of circuitry in human motor cortices that contribute to movement. Further, TMS approaches are used to promote neural plasticity within cortical and spinal circuitry in an attempt to create short-term changes in motor control. This review is focused on the application of TMS techniques in the study of characterizing and promoting neural plasticity within individuals presenting with chronic spinal cord injury. We review TMS research performed in individuals with SCI and consider new opportunities for the use of TMS approaches to promote neural plasticity for improving motor recovery

    UNLV College of Education Multicultural & Diversity Newsletter

    Full text link
    Each morning I wound my way up the steep hill along the deeply rutted dirt path, exchanging daily maaa\u27s with five bleating sheep and shouting out, ¡Hola! in response to the children who gleefully identified me as ¡Gringa! Women and children, colorful bowls of cooked maize balanced atop their heads, sauntered to and from Maria Elena\u27s where their maize would be ground; at home the dough would be shaped and flattened into tortillas, the mainstay of every meal in the small Guatemalan village of San Juan

    Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception

    Get PDF
    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively

    Consensus recommendations on the treatment of opioid use disorder in the emergency department

    Get PDF
    The treatment of opioid use disorder with buprenorphine and methadone reduces morbidity and mortality in patients with opioid use disorder. The initiation of buprenorphine in the emergency department (ED) has been associated with increased rates of outpatient treatment linkage and decreased drug use when compared to patients randomized to receive standard ED referral. As such, the ED has been increasingly recognized as a venue for the identification and initiation of treatment for opioid use disorder, but no formal American College of Emergency Physicians (ACEP) recommendations on the topic have previously been published. The ACEP convened a group of emergency physicians with expertise in clinical research, addiction, toxicology, and administration to review literature and develop consensus recommendations on the treatment of opioid use disorder in the ED. Based on literature review, clinical experience, and expert consensus, the group recommends that emergency physicians offer to initiate opioid use disorder treatment with buprenorphine in appropriate patients and provide direct linkage to ongoing treatment for patients with untreated opioid use disorder. These consensus recommendations include strategies for opioid use disorder treatment initiation and ED program implementation. They were approved by the ACEP board of directors in January 2021

    Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes

    Get PDF
    Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, “model soil consortium-2” (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soi

    Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes

    Get PDF
    Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, “model soil consortium-2” (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil

    An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium.

    Get PDF
    Intestinal crypt fission is a homeostatic phenomenon, observable in healthy adult mucosa, but which also plays a pathological role as the main mode of growth of some intestinal polyps. Building on our previous individual based model for the small intestinal crypt and on in vitro cultured intestinal organoids, we here model crypt fission as a budding process based on fluid mechanics at the individual cell level and extrapolated predictions for growth of the intestinal epithelium. Budding was always observed in regions of organoids with abundant Paneth cells. Our data support a model in which buds are biomechanically initiated by single stem cells surrounded by Paneth cells which exhibit greater resistance to viscoelastic deformation, a hypothesis supported by atomic force measurements of single cells. Time intervals between consecutive budding events, as simulated by the model and observed in vitro, were 2.84 and 2.62 days, respectively. Predicted cell dynamics was unaffected within the original crypt which retained its full capability of providing cells to the epithelium throughout fission. Mitotic pressure in simulated primary crypts forced upward migration of buds, which simultaneously grew into new protruding crypts at a rate equal to 1.03 days-1 in simulations and 0.99 days-1 in cultured organoids. Simulated crypts reached their final size in 4.6 days, and required 40 6.2 days to migrate to the top of the primary crypt. The growth of the secondary crypt is independent of its migration along the original crypt. Assuming unrestricted crypt fission and multiple budding events, a maximal growth rate of the intestinal epithelium of 0.10 days-1 43 is predicted and thus approximately 22 days are required for a 10-fold increase of polyp size. These predictions are in agreement with the time reported to develop macroscopic adenomas in mice after loss of Apc in intestinal stem cells

    Empowering Hope-based Climate Change Communication Techniques for the Gulf of Maine

    Get PDF
    The Gulf of Maine is one of the fastest warming marine areas on the planet: The industries and creatures that call it home face an unprecedented shift in their interactions and existence. Scientists, policy makers, and practitioners often want to communicate to the public about the seriousness of the situation to encourage mitigation and adaptation. Many standard communication strategies that rely on fear and scientific authority alone—rather than comprehensive explanations that include solutions—can leave audiences feeling overwhelmed and disengaged, instead of hopeful and motivated to act. In this practice bridge, we showcase a social science research-based climate change communication “tool-kit” for the Gulf of Maine, using one example for each climate driver addressed at the Gulf of Maine 2050 Symposium (temperature and circulation: lobster fisheries; coastal and ocean acidification: seagrass restoration; sea-level rise: coastal development). Communication models that involve the head (understanding of climate change), heart (hope through agency and efficacy), and hands (intentions to participate in community action) further engagement in climate change conversations. We explain the research behind our communication framework, enabling practitioners to extend this case study to their own work
    • …
    corecore